MASS TRANSFER BETWEEN A SPHERICAL PARTICLE
AND A LIQUID FOR SMALL PECLET NUMBERS
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Analytic expressions are obtained in calculating the concentration field during
nonstationary mass exchange between a spherical particle and a liquid flow,

The problem of convective diffusion from a single particle was investigated by Acrivos
and Taylor [l]. More complicated problems, such as dependence of convective diffusion on
coordinates [2], presence of absorption [3], and so on, were also investigated by these
methods., Buevich and Perminov [3] considered nonstationary processes of heat- or mass-—
transfer from bodies of various shapes for the case of a streamline flow of these bodies
around a potential flow for large Péclet numbers in the approximation of a diffusive bound-
ary layer,

In the present paper we investigate the nonstationary mass transfer between a rare
liquid or solid sphere and a viscous liquid flow, when the Rybchinskii—Hadamard equations
are valid., It is also assumed that Pe »0. Detailed analysis of the numerical solution of
the equations of convective diffusion was earlier provided [4, 5] for similar problems.

We write the equations for the dimensionless concentrations & and n outside and inside
the sphere, respectively:
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The initial and boundary conditions imposed on the solution of (1)-(2) are given in the form
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and ur(o), u@(o), ur(i), ue(i> are the velocity components for the following current func-
tions [6]:
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Here and below the subscripts 1 or n are used for the internal part of the sphere, and the
subscripts O or £ for the space surrounding the sphere. The quantities appearing in
Egs. (7)-(8) acquire the values:
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The Henry number H, being a function of temperature and pressure, and being the ratio of the
real material concentration at the inside boundary of the sphere to the concentration at the
outer boundary, will be assumed to be a constant quantity,

Applying a Laplace transform to (1)-(5), we write the solution of the equations for g*
and n* in form of asymptotic expansions in powers of Pe
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For the zeroth approximation we obtain the Helmholtz equations, whose solutions are
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where s is the Laplace variable.

In Eqs. (11)-(12) we replace the expressions for £% and n¥§ by equivalent ones for small
and large s, and, further applying the inverse Laplace transform, we obtain
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for small t.

For the case y=1 and H =1 one can find the original transforms (11)-(12) exactly:
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We seek solutions of the first approximation equations in the form
— RY (s, r)cos®, ni =R (s, r)cosh. (19)

Substituting Eq. (19) in the corresponding equations and separating variables, we obtain
the modified Bessel equations, whose solutions are found approximately. After the inverse
transformations we have
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Thus, the solutions of Eqs. (1)-(2) can be written in first approximation in the form
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For calculations of local Sherwood numbers we use the following equations:
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Integrating Shgy and Shpt over the particle surface, it is easily seen that the mean Sherwood
numbers are independent of the second terms of expansions (24)-(25), and therefore satisfy
only the zeroth approximation
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Expressions (27)-(28) are correct for small Fourier numbers, while their first terms
coincide with the corresponding quantities derived in [4, 5].

When v =H =1 the following equality is wvalid for any t
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It is also interesting to determine the effective values of the Sherwcod numbers after
some time intervals, Figure 1 illustrates the dependence of Shgy on the Fourier number. For

813



o
(62]
=

ur

i/

N
\\\\l Fig. 1. The Sherwood number
\\\ { Shg as a function of the

; Fourier number Fo: 1) y =H-=

i \\\\ 13 2) y=10; H=0,1; 3) yv=
\ 0.1; H=10.
S | I\

5 4 5 2 -1 0 / 19fo

/

sufficiently large Fo we have Shg =0.667 (Fo)~', which is verified by theoretical calcula-
tions [4].

NOTATION

Here a, radius of the spherical particle; C, B, D, E, G, o, quantities defined in (9);
Dg, Dy, diffusion coefficients; H, Henry number; Pe, Peclet number; r*, radial coordinate;
r, dimensionless radial coordinate; Fo, Fourier number; t*, time, Shgt, Shyt, local Sherwood
numbers, the bar denotes averagln% over surface particles; Shg, Shy, effective Sherwood num-
bers; U, flow velocityy ur ug (1), velocity components; vy, yi, quantities
defined in (6); 6, angular coordlnate, uo, ul, viscosities inside and outside the sphere;
£, 1, dimensionless concentrations and ¥{(i), y (° ), stream flow,
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